
TRULY SCALE-EQUIVARIANT DEEP NETS WITH FOURIER LAYERS
Md Ashiqur Rahman Raymond A. Yeh

Department of Computer Science, Purdue University

MOTIVATION
Scale Equivariance:

Ours (Scale-
Equivariant)

Ours (Scale-
Equivariant)

Ideal Down-
sampling

Ideal Down-
sampling

Regular CNN

Regular CNN

Ideal Down-
sampling

Ideal Down-
sampling

• Scale-equivariance is crucial for consistent performance
• Prior works did not consider aliasing, resulting in equivariance

error

Can we design a perfect scale equivariant layer?
• Maintain scale consistency while achieving good performance

Contributions:
• Propose scale-equivariant Fourier Layer
• End-to-end equivariance with non-linearity and pooling
• Connect scale equivariance to classification task for improved

scale consistency.

INTRODUCTION

Scaling Operation: Down-scaling a signal x ∈ RNcan be per-
formed by subsampling by a scaling factor, i.e.,

SubR(x)[n] = x[Rn].

Ideal Down-sampling: To avoid aliasing from subsampling, a low-
pass filter h must be performed, i.e.,

DR(x) = SubR(h⊛ x).
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OUR APPROACH

Scale Equivariant Deep Nets

Let g denote a deep net such that y = g(x). If this deep net g can be equivalently represented as
a set of functions G̃k : C2k+1 → C such that

Y[k] = G̃k(X[−k : k]) ∀k

then g is scale-equivariant. In other words, the output’s frequency terms can only depend on
the terms in X that are equal or lower in frequencies. We illustrate this structure with a linear
function, G̃, in the Figure. The values of the Grey cells are 0.

-3

-2

-1

0

1

2

3

X

-3

-2

-1

0

1

2

3

Y G̃

=

Spatially Localized Spectral Conv:
• ✓ Spectral convolution is scale equivariant
• ✗ Global in nature – ill fit for vision tasks
• We propose Localized Spectral Convolution

✓ Maintains equivariance
✓ Captures local features

Non-Linearity and Pooling:
• For any function σ, its scale equivariant ver-

sion, σeq(x) = y, can be defined as

Y[k] = F
(
σ ◦ F−1(X

[
− |k| : |k|

]
)
)
[k]

where X = F(x) and Y = F(y)
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Classification and Scaling:
• Invariance is not desirable for scaling
• Classification loss should not increase at a

higher scale
• We propose scale consistency loss

Lcon = max
(
L(ŷ[k], y)−L(ŷ[k−1], y), 0

)
.

Here, ŷ[k] is the prediction of classifier M at
kth scale.

RESULTS
Qualitative Results: Perfect scale equivalence with non-linearity and pooling (Left). Robust to
non-ideal down-sampling (Right).

Ideal Downsampling Non-Ideal Downsampling
Quantitative Results:

Results on MNIST-scale
Models Acc.↑ Scale-Con.↑ Equi-Err.↓

CNN 0.9737 0.6621 -
Per Res. CNN 0.9388 0.0527 -
SESN 0.9791 0.6640 -
DSS 0.9731 0.6503 -
SI-CovNet 0.9797 0.6425 -
SS-CNN 0.9613 0.3105 -
DISCO 0.9856 0.5585 0.44

Fourier CNN 0.9713 0.2421 0.28
Ours 0.9889 0.9716 0.00

Results on MNIST-scale with missing Scales
Models Acc.↑ Scale-Con.↑ Equi-Err.↓

CNN 0.9737 0.6621 -
Per Res. CNN 0.9388 0.0527 -
SESN 0.9791 0.6640 -
DSS 0.9731 0.6503 -
SI-CovNet 0.9797 0.6425 -
SS-CNN 0.9613 0.3105 -
DISCO 0.9856 0.5585 0.44

Fourier CNN 0.9713 0.2421 0.28
Ours 0.9889 0.9716 0.00

Data Efficiency
Models / # Samples 5000 2500 1000

CNN 0.9432 0.9389 0.8577
Per Res. CNN 0.9118 0.8392 0.5815
DISCO 0.9794 0.9665 0.9457
SESN 0.9638 0.9402 0.9207
SI-CovNet 0.9641 0.9437 0.9280
SS-CNN 0.9477 0.9259 0.9176
DSS 0.9654 0.9401 0.9281
Fourier CNN 0.9567 0.9419 0.8910
Ours 0.9835 0.9767 0.9606

Results on STL10-scale
Models Acc.↑ Scale-Con.↑ Equi-Err.↓

Wide ResNet 0.5596 0.2916 0.16
SESN 0.5525 0.4166 0.04
DSS 0.5347 0.1979 0.02
SI-CovNet 0.5588 0.2187 0.03
SS-CNN 0.4788 0.1979 1.82
DISCO 0.4768 0.3541 0.06

Fourier CNN 0.5844 0.2812 0.19
Ours 0.7332 0.6770 0.00


