

MOTIVATION

Scale Equivariance:

- Scale-equivariance is crucial for consistent performance
- Prior works did not consider aliasing, resulting in equivariance error

Can we design a perfect scale equivariant layer?

• Maintain scale consistency while achieving good performance

Contributions:

- Propose scale-equivariant Fourier Layer
- End-to-end equivariance with non-linearity and pooling
- Connect scale equivariance to classification task for improved scale consistency.

INTRODUCTION

Scaling Operation: Down-scaling a signal $\mathbf{x} \in \mathbb{R}^N$ can be performed by subsampling by a scaling factor, i.e.,

$$\operatorname{Sub}_R(\mathbf{x})[n] = \mathbf{x}[Rn].$$

Ideal Down-sampling: To avoid aliasing from subsampling, a lowpass filter h must be performed, *i.e.*,

$$\mathcal{D}_R(\mathbf{x}) = \mathtt{Sub}_R(\mathbf{h} \circledast \mathbf{x})$$

TRULY SCALE-EQUIVARIANT DEEP NETS WITH FOURIER LAYERS Md Ashiqur Rahman

OUR APPROACH

Scale Equivariant Deep Nets

Let g denote a deep net such that y = g(x). If this deep net g can be equivalently represented as a set of functions $\tilde{G}_k : \mathbb{C}^{2k+1} \to \mathbb{C}$ such that

$$\mathbf{Y}[k] = \tilde{G}_k(\mathbf{X}[-k:k]) \ \forall k$$

then g is scale-equivariant. In other words, the output's frequency terms can only depend on the terms in X that are equal or lower in frequencies. We illustrate this structure with a linear function, G, in the Figure. The values of the Grey cells are 0.

Raymond A. Yeh Department of Computer Science, Purdue University

• \checkmark Spectral convolution is scale equivariant • X Global in nature – ill fit for vision tasks • We propose Localized Spectral Convolution Maintains equivariance Captures local features

• For any function σ , its scale equivariant version, $\sigma_{eq}(\mathbf{x}) = \mathbf{y}$, can be defined as

$$F\left(\sigma \circ \mathcal{F}^{-1}(\mathbf{X}[-|k|:|k|])\right)[k]$$

where $\mathbf{X} = \mathcal{F}(\mathbf{x})$ and $\mathbf{Y} = \mathcal{F}(\mathbf{y})$

• Invariance is not desirable for scaling • Classification loss should not increase at a

• We propose scale consistency loss

$$(\mathcal{L}(\hat{\boldsymbol{y}}[k], y) - \mathcal{L}(\hat{\boldsymbol{y}}[k-1], y), 0).$$

Here, $\hat{y}[k]$ is the prediction of classifier \mathcal{M} at

RESULTS

non-ideal down-sampling (Right).

Ideal Downsampling					Non-Ideal Downsampling			
Quantitative]	Results	5.						
Results on MNIST-scale					Results on MNIST-scale with missing Scales			
Models	Acc.1	Acc.↑ Scale		Equi-Err.↓	Models	Acc.↑	Scale-Con.↑	Equi-Err.↓
CNN	0.973′	7 0.0	5621	_	CNN	0.9737	0.6621	_
Per Res. CNN	0.938	8 0.0)527	_	Per Res. CNN	0.9388	0.0527	—
SESN	0.979	<u>0.</u>	5640	_	SESN	0.9791	0.6640	_
DSS	0.973	1 0.0	5503	_	DSS	0.9731	0.6503	_
SI-CovNet	0.979′	7 0.0	5425	—	SI-CovNet	0.9797	0.6425	_
SS-CNN	0.961.	3 0.3	3105	_	SS-CNN	0.9613	0.3105	_
DISCO	0.985	<u>6</u> 0.4	5585	0.44	DISCO	0.9856	0.5585	0.44
Fourier CNN	0.971.	3 0.2	2421	0.28	Fourier CNN	0.9713	0.2421	0.28
Ours	ours 0.988		9716	0.00	Ours	0.9889	0.9716	0.00
Data Efficiency					Results on STL10-scale			
Models / # Samples		5000	2500	1000	Models	Acc.↑	Scale-Con.↑	Equi-Err.↓
CNN		0.9432	0.9389	0.8577	Wide ResNet	0.5596	0.2916	0.16
Per Res. CNN		0.9118	0.8392	0.5815	SESN	0.5525	0.4166	0.04
DISCO		0.9794	0.9665	0.9457	DSS	0.5347	0.1979	0.02
SESN		0.9638	0.9402	0.9207	SI-CovNet	0.5588	0.2187	0.03
SI-CovNet		0.9641	0.9437	0.9280	SS-CNN	0.4788	0.1979	1.82
SS-CNN DSS		0.9477 0.9654	0.9259	0.9176 0.9281	DISCO	0.4768	03541	0.06
			0.9401			0.7700	0.3371	0.00
Fourier CNN		0.9567	0.9419	0.8910	Fourier CNN	0.5844	0.2812	0.19
Ours		0.9835 0.9767		0.9606	Ours	0.7332	0.6770	0.00

Qualitative Results: Perfect scale equivalence with non-linearity and pooling (Left). Robust to

